If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+48^2=57^2
We move all terms to the left:
a^2+48^2-(57^2)=0
We add all the numbers together, and all the variables
a^2-945=0
a = 1; b = 0; c = -945;
Δ = b2-4ac
Δ = 02-4·1·(-945)
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{105}}{2*1}=\frac{0-6\sqrt{105}}{2} =-\frac{6\sqrt{105}}{2} =-3\sqrt{105} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{105}}{2*1}=\frac{0+6\sqrt{105}}{2} =\frac{6\sqrt{105}}{2} =3\sqrt{105} $
| -7=-6x-8+7x | | -1=2+x-2 | | 3/7*a+19=10 | | 5y-3/2+10/4=10y+4/4 | | 1=-3+x | | 0.25(10)+0.10d=2.8 | | 0.25(10)+0.10d=2.80 | | (49+54)/y+1=11 | | 7x-(2x-4)+1=-10+8x | | 4.1y+2.6(y+4)=64 | | -2x+6+6(x+1)=7x+6 | | 3/11(w-2)-60/11=-6 | | -6=-13+x | | (66+65)/(y+2)=35 | | (3w+5)(6-w)=0 | | (35+89)/y=8 | | 4(x+2)+7(x+2)=88 | | (8*y)^2-66=80 | | 4*y^2-41=18 | | (2x-5)(5x+8)=10x^2-9x-40 | | (y+14)/(18+4)=8 | | (y+10)/9+19=22 | | y/3-13=10 | | .06w=10.56 | | 3*(y+8)/15=33 | | 7n+3n=-2n-6 | | 20+2x=3x+2 | | a^2+30^2=96^2 | | 44^2+3^2=c^2 | | v-6=-12 | | (40+85)/y+2=20 | | c/7=10 |